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Abstract
The spectral density for vector vibrations in the face-centred cubic lattice with
force-constant disorder is analysed within the coherent potential approximation.
The phase diagram showing the weak- and strong-scattering regimes is
presented and compared with that for electrons. The weak-scattering regime
for external long-wavelength vibrational plane waves is shown to be due to
sum-rule correlations in the dynamical matrix. A secondary peak below the
Brillouin peak for sufficiently large wavevectors is found for the lattice models.
The results obtained are supported by precise numerical solutions.

1. Introduction

Vibrational excitation in disordered structures is an active field of investigation by different
methods. The first approaches were developed many decades ago for the case of substitutional
alloys (see e.g. [1–4] and references therein). Disorder was introduced there by the
random positioning of two or more atomic species (of different masses) onto lattice sites.
Successful analytical methods have also been adapted for such problems [4–6]. The rigidity–
percolation problem has been solved to some extent numerically and within the mean-field
approximations [7,8]. Atomic vibrations in structures with fractal geometries were investigated
in [9, 10]. Some phenomenological [11–14] and more realistic [15–17] models of atomic
vibrations in glasses have been developed in order to describe the thermodynamical and
phonon-transport peculiarities of such materials. Various computer experiments have also
been performed on disordered structures (see e.g. [18] and references therein).

Recently, the methods of the mode-coupling theory have been applied to investigate short-
time vibrational dynamics, especially in the low-energy regime [19]. The low-energy behaviour
of the vibrational density of states and dynamical structure factor have been investigated in
disordered lattice models within the coherent potential approximation (CPA) [20–22], and
in positionally disordered models treated perturbatively in the low-inverse-particle-density
limit [23–26]. The spectral properties of the Euclidian random matrices associated with
topologically disordered systems [23] were investigated within a supersymmetric statistic field
theory in [27]. The spectral properties of the Laplacian defined on a random graph [28] and
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‘small-world’ lattices [29] are related to topologically disordered solids and have also been
investigated.

Previously, vibrational displacements in disordered structures have been treated as scalars,
which is a convenient simplification of the vector nature of atomic vibrations (although vector
vibrations were considered in the rigidity–percolation problem [7]). However, a consistent
treatment of vector vibrations in disordered lattices has not been performed up to now. The
main purpose of this paper is to fill this gap and to give a mean-field description of vector
vibrational models, namely:

(i) to derive the CPA equations for vector vibrations in disordered lattices with force-constant
disorder;

(ii) to solve them analytically in limiting cases and numerically through the whole energy
range;

(iii) to apply the solution to investigate the scattering properties of external plane-wave
vibrational excitations and, in particular, the Ioffe–Regel crossover from a weak- to strong-
scattering regime;

(iv) to demonstrate the importance of sum-rule correlations in the dynamical matrix for
scattering properties of vibrational external plane waves.

One of the main results of the paper is the phase diagram for vector vibrations in the
representative face-centred cubic (fcc) lattice showing the ranges of weak- and strong-scattering
regimes for different degrees of disorder. Another result concerns a comparative analysis of the
vibrational problem with the electronic one, and an explanation of the essential differences in
phase diagrams for these problems. All the major derivations and conclusions are supported by
precise numerical solutions for the same model, which demonstrate the very good performance
of the mean-field CPA approach, both for the density of states and the spectral density in a
plane-wave basis (dynamical structure factor) in the whole energy range, except for the high-
frequency tail region containing localized states.

The rest of the paper is arranged in the following manner. The model is defined in section 2.
The properties of the effective mean field are analysed in section 3. The spectral densities and
the scattering properties of the external plane waves are discussed in section 4. The conclusions
are given in section 5.

2. Model

2.1. Hamiltonian

Atomic vibrations in the harmonic approximation can be treated in the classical limit [4]. Thus
the problem is reduced to the Hamiltonian formalism, in which the dynamical operator plays
the role of the Hamiltonian, and the squared frequency, ω2, is an energy, ε = ω2. The relevant
Hamiltonian (dynamical operator) for vector vibrations of N interacting atoms of unit masses
(mi = 1) can be written in the following form:

Ĥ =
∑
iα,jα′

Hiα,jα′ |i, α〉〈j, α′|, (1)

where we have used the site orthonormal basis of vectors |i, α〉, the only non-zero component
of which is related to the displacement of atom i (i = 1, . . . , N) along the Cartesian direction α
(α = 1, . . . , D). The (dynamical) matrix elementsHiα,jα′ , being the second partial derivatives
of the interatomic potential, obey the following sum rules [30]:

Hiα,iα′ = −
∑
j �=i
Hiα,jα′ . (2)



Vector vibrations and the Ioffe–Regel crossover in disordered lattices 3145

These sum-rule correlations between the elements of the D × D diagonal and off-diagonal
blocks distinguish the vibrational problems from the electron problems described by similar
Hamiltonians [5, 6] (see section 4.5). The matrix elements of the Hamiltonian (1), generally
speaking, are functions of all equilibrium atomic positional vectors, r

(0)
i .

Our aim is to solve the eigenproblem for the Hamiltonian (1). This can be easily done for
a crystal [30] but is not so simple for a disordered structure. The analysis starts with a choice
of the vibrational model for a disordered system. This could be:

(i) a crystalline lattice of atoms of random masses (mass disorder) and/or connected by
random springs (force-constant disorder) [20–22, 31];

(ii) positionally disordered structures created, for example, by random atomic displacements
around crystalline sites [24–26], or in other ways, for example the Bethe lattice or by bond
switching [32];

(iii) atomic structures, created for example by molecular dynamics (classical or ab initio), in
which intrinsic positional disorder defines the force-constant disorder (see e.g. [33–37]).

The simplest models are from the first class. Analytical approaches can be easily developed
for them due to the existence of a well defined reference crystalline system (i.e. the same
lattice without disorder) [4–6, 38]. Surprisingly at first sight (see below), lattice models with
force-constant disorder mimic very well the main features of topologically disordered glasses
and even liquids, for example the boson peak, localized band tails, main peaks in the density of
states and zero-energy singularity in the instantaneous spectrum [20–22, 39, 40]. The known
drawback of lattice models is related to the k4 frequency dependence of the width of the
dynamical structure factor [20, 21, 25, 41] as compared with the parabolic behaviour found
experimentally (see e.g. [42]). This k4-dependence leads to a parabolic frequency scaling of
the dynamic structure factor, S(k, ω) ∝ ω2 for ω → 0, which is in contrast to the frequency-
independent S(k, ω) found for topologically disordered models [19, 43].

2.2. Distribution of force constants

In this paper, we consider as a vibrational model the crystalline fcc lattice of atoms, in which
the nearest neighbours are connected by springs that are unstretched in equilibrium. The matrix
elements of the Hamiltonian (1) in this case have the following form:

Hiα,jα′ = −κij (r̂(0)ij )α(r̂(0)ij )α′ , if i �= j, (3)

where r̂
(0)
ij = (r(0)j − r

(0)
i )/|r(0)j − r

(0)
i | is the unit connection vector between atoms i and j in

equilibrium. The spring constants, κij , are supposed to be independent of atomic positions and
are random values taken from a certain probability distribution, ρ(κ). Different functional
forms of ρ(κ) have been used for various problems, for example a combination of two
δ-functions [21, 44–46] (also used in the rigidity–percolation problem [7]) and the normal
(Gaussian) [20], box [22] and hyperbolic [31] distributions for glassy problems. Below we
use the box distribution:

ρ(κ) = 1

2�
[θ(κ − κ0 +�)− θ(κ − κ0 −�)], (4)

where the Heaviside function θ(x < 0) = 0 and θ(x � 0) = 1, κ0 is the spring constant
in the reference crystal and 2� is the full width of the distribution. The particular form of
the peak-shaped distribution is not important for all results presented below from a qualitative
point of view, as we have checked by using the normal distribution instead of the box one. The
box distribution also has the advantage of not needing a lower cut-off to ensure positive values
of force constants, as in the case for the normal and hyperbolic distributions.
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If the distribution given by equation (4) is wide enough, i.e.� > κ0 (κ0 = 1 below), then
negative spring constants appear in the system which could result in vibrational instability of
the model in equilibrium, i.e. the occurrence of negative eigenvalues. Such a situation is of
direct relevance [40] to an instantaneous mode analysis in liquids [47–49].

The vibrational spectrum of a disordered system is defined by the properties of the
Hamiltonian (dynamical) matrix. In the case of a crystal, the Hamiltonian matrix is well
structured (e.g. cyclic band diagonal). For topologically disordered glasses with conserved
local order, the Hamiltonian matrix is structured similarly to that for the crystalline counterpart
(with the same local order) but now, due to the presence of topological disorder: (i) the
positions of elements are distributed about their positions in the crystalline matrix (locational
disorder) and (ii) the values of the elements are also distributed because of different interatomic
distances. The first effect is completely ignored in the disordered-lattice models and the total
influence of disorder is attributed entirely to the second effect. The question is, how good is
this approximation?

One criterion relates to similarities in the probability distributions for the values of
the matrix elements for both types of model. We have compared the distributions of the
Hamiltonian matrix elements for two vibrational models: (i) the fcc disordered-lattice model
discussed above and described by the matrix elements H lat

iα,jα′ obeying equation (3) and (ii) a
topologically disordered model of a single-component glass with predominantly icosahedral
order (IC-glass) obtained by classical molecular dynamics (see [39,50] for more detail). In the
latter model, the Hamiltonian matrix elements,H glass

iα,jα′ , are defined by the pairwise interatomic

potential [51],V (|r(0)ij |), its spatial derivatives,V ′(|r(0)ij |) andV ′′(|r(0)ij |), and the relative atomic
positions,

H
glass
iα,jα′ = −(r̂(0)ij )α(r̂(0)ij )α′

[
V ′′(|r(0)ij |)− V ′(|r(0)ij |)

|r(0)ij |

]
− δα,α′

V ′(|r(0)ij |)
|r(0)ij |

. (5)

The Hamiltonian matrix contains D ×D diagonal and off-diagonal blocks, the diagonal
(Hiα,iα and Hiα,jα) and off-diagonal (Hiα,iα′ and Hiα,jα′) elements being distinctively
distributed. For the diagonal elements in the off-diagonal blocks, it is convenient to compare
the traces taken with opposite signs. They represent the force constants, κ lat

ij = ∑
α H

lat
iα,jα and

κ
glass
ij = ∑

α H
glass
iα,jα = (V ′′(|r(0)ij |) + 2V ′(|r(0)ij |)/|r(0)ij |), for interactions beween atoms i and j

in lattice and glassy models, respectively. Similarly the traces of diagonal blocks correspond
to the total force constants, κ lat

ii and κglass
ii , for atom i in lattice and glassy models, respectively,

where κ lat(glass)
ii = ∑

j κ
lat(glass)
ij .

The four distributions for both models presented in figures 1(a)–(d) show qualitatively
the same features. The distributions of the diagonal elements in the diagonal blocks, ρ(κglass

ii )

and ρ(κ lat
ii ), are both peak shaped with remarkably comparable peak positions and peak widths

(see figure 1(a)). The distributions of the off-diagonal elements in the diagonal blocks are
both centred around zero and have comparable widths (see figure 1(b)). The distributions of
the elements for the off-diagonal blocks are much more model dependent. The solid curve in
figure 1(c) represents the distribution ρ(κglass

ij ) for all interacting atomic pairs. The distribution
function has a complicated form, the features of which can be understood in terms of the
functional forms of the interatomic potential and the atomic pair correlation function. For
example, if nearest-neighbour interactions only are taken into account (as in the disordered-
lattice model), then the distribution function ρ(H glass

ij ) has a single peak (see the inset in
figure 1(c)), which corresponds to the first peak in the pair correlation function [51]. The
simplest model distribution which can mimic the function ρ(κglass

ij ) (at least its scale) is the
box distribution (the dashed curve in figure 1(c)). The distribution of the off-diagonal elements
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Figure 1. The distribution of the matrix elements (scaled by the spectral band widths) of the
vibrational Hamiltonian matrix for the IC-glass (solid curve) and disordered fcc lattice (dashed
(� = 1) and dot–dashed (� = 1.28) curves): (a) ρ(κii ) for the traces of the diagonal blocks;
(b) ρ(Hiα,iα′ ) for the off-diagonal elements in the diagonal blocks; (c) ρ(κij ) for the traces taken
with opposite sign in the off-diagonal blocks; (d) ρ(Hiα,jα′ ) for the off-diagonal elements in the

off-diagonal blocks. The inset in (c) shows ρ(H glass
i,j ) for nearest-neighbour interactions only.

in the off-diagonal blocks (see figure 1(d)) has a maximum at zero and is symmetric about it.
The disordered-lattice models are intrinsically anisotropic, so that the distribution function,
ρ(H lat

iα,jα′), can look quite different to ρ(H glass
iα,jα′). For example, for the ordered fcc lattice

(� = 0), it consists of two δ-functions symmetrically located around zero. With increasing
disorder, these δ-functions are transformed into two box distributions which merge at � = 1,
forming the single box distribution shown in figure 1(d) by the dashed curve. For larger
� > 1, these two boxes overlap around zero, thus resulting in a box-shaped peak in this
region, i.e. the distribution function ρ(H lat

iα,jα′) becomes closer in shape to the peak-shaped

function ρ(H glass
iα,jα′).

The above comparison demonstrates that the very simple disordered-lattice model with a
box distribution of force constants is able to reproduce correctly the ranges of the distributions
of the Hamiltonian matrix elements for a topologically disordered glass with minimal short-
range order (i.e. the IC-glass). This leads to the plausible conjecture that the physical origins
of different phenomena, such as the boson peak, Ioffe–Regel crossover and secondary peak in
the dynamic structure factor (analysed below), localization–delocalization transition etc, are
common for topologically disordered glasses and disordered lattices.

The other important point to emerge concerns the possibility of estimating the degree of
disorder in disordered-lattice models at which they are able to mimic glassy models. For small
disorder, all the distributions for the disordered-lattice model presented in figure 1 are quite
narrow and are not comparable in width to the distributions for the glassy model. They become
similar only for sufficiently large disorder (� ∼ 1).

Below we use the simplest (box) distribution of force constants which allows us to analyse
the problem analytically and which mimics some of the features of topologically disordered
glasses by disordered lattices. A natural extension of the lattice models is in the use of more
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Figure 2. The VDOS versus energy in the crystalline (dashed curve) fcc lattice and in fcc
lattices with force-constant disorder characterized by different widths (as marked), �, of the box
distribution. The curves for the disordered models have been obtained by the CPA and the kernel
polynomial method (KPM) [61], as described in the text.

realistic force-constant distributions for crystalline counterparts of topologically disordered
glasses and a comparison of the resulting properties of such models with the corresponding
glasses. A possible way to mimic disorder in glasses is to introduce thermal (positional)
disorder in the crystalline counterpart. We have done this for the IC-glass and its crystalline
counterpart, the Frank–Kasper σ -phase [52]. A σ -phase lattice has been heated by means of
molecular dynamics and the dynamical matrix for the instantaneous configuration has been
calculated. The elements of such a matrix do not exhibit locational disorder and only their
values are distributed. Using temperature as a control parameter it is possible to obtain the
distributions of matrix elements very similar to those for the topologically disordered IC-
glass (see figure 6 in [52]). The vibrational density of states (VDOS) for instantaneous
configurations of the σ -phase, as a consequence of such a similarity, resembles the VDOS
for the IC-glass [39, 52]. This supports the use of lattice models for mimicking topologically
disordered structures. We should mention, however, that the elements of the dynamical matrix
(belonging to the Euclidian ensemble [23]) for positionally disordered crystalline counterparts
are correlated with each other within a certain row. These correlations are absent for the simple
box distributions used below.

2.3. Coherent potential approximation

The solution of the eigenproblem for the Hamiltonian (1) is known for a crystal, when
� = 0 in equation (4). The eigenmodes then are plane waves |k, β〉, characterized by the
wavevector k, the branch number β and the eigenenergies εkβ . The VDOS, gcryst(ε) =
(DN)−1 ∑

k,β δ(ε−εkβ), forms a band (see the dashed curve in figure 2) containing van Hove
singularities, and behaves as (ε)(D/2)−1 around the band edges [30]. Disorder (� > 0) brings
new features to the spectrum (see figure 2):

(i) the van Hove singularities are washed out;
(ii) a high-frequency tail containing localized states occurs;

(iii) extra states appear in the low-energy regime.
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The exact solution of the vibrational problem with random spring constants is not
known, but a number of approximate methods, both for electrons and vibrations, have been
developed [4, 5, 53, 54]. We are interested in the global features of the spectrum, except the
tail region where the states are localized. An adequate approach in this case is a mean-field
treatment within the CPA [4, 5, 38], which we use below. The CPA is known to be very
successful in a description of the electronic and vibrational properties of substitutional alloys
and is expected to work very well in the whole energy range, except the far tails containing
strongly localized states, where field-theoretical approaches are much better [54].

The Hamiltonian (1) can be rewritten in the bond representation,

Ĥ = 1
2

∑
i,j

κij |ij〉〈ij |, (6)

with |ij〉 = ∑
α(r̂

(0)
ij )α(|i, α〉−|j, α〉), which is a convenient form for a subsequent mean-field

treatment. The VDOS of disordered systems, g(ε),

g(ε) = 1

ND
TrÂ(ε) = 1

ND

∑
kβ

〈∑
d

|〈d|k, β〉|2δ(ε − εd)
〉
, (7)

can be defined via the spectral-density operator [38], Â(ε) = 〈δ(ε − Ĥ)〉, where the angular
brackets, 〈. . .〉, denote averaging over random spring constants. The coefficients, |〈d|k, β〉|2,
in equation (7) have a simple physical meaning [38]; they define the weight of the disordered
eigenstate |d〉 in the crystalline state |k, β〉, which is a plane wave of a certain polarization.
The importance of the spectral-density operator in the plane-wave basis is related to the fact
that the matrix elements Âkβ(ε) = 〈kβ|Â|kβ〉 are proportional to the dynamical structure
factor [21] (see section 4.4) which can be measured experimentally [55].

Both the VDOS, g(ε), and the spectral density, Âkβ(ε), can be found for vector vibrations
within the mean-field approximation (see appendix A):

g(ε) = − 1

π
Im

[
1

z(ε)
Gcryst

(
ε

z(ε)

)]
, (8)

and

Akβ(ε) = − 1

π

z′′(ε)εkβ
[ε − z′(ε)εkβ]2 + [z′′(ε)εkβ]2

, (9)

via the crystalline Green function, Gcryst, and the complex effective mean field, z(ε) =
z′(ε) + iz′′(ε) = κ̃(ε)/κ0 (the dimensionless effective force constant), which can be found
from the solution of the self-consistent equation (29).

3. Effective field

As seen from equations (8) and (9), the spectral properties of a disordered lattice, within the
CPA, are characterized by the energy dependence of the effective dimensionless force constant
(effective field), z(ε). In this section, we discuss the properties of the effective field obtained
by the solution of the self-consistent equation (29) (see appendix A) for different values of
disorder and in different energy ranges. The most important regime from the viewpoint of
comparison with experimental data for the dynamical structure factor is the low-energy limit
(ε → 0), analysed below.

For the particular choice of the boxlike force-constant probability distribution given by
equation (4), the integration in equation (29) can be done analytically, resulting in the following
expression:

1 +
1

2�α(ε)
ln

[
1 +�− z(ε)− α−1(ε)

1 −�− z(ε)− α−1(ε)

]
= 0, (10)
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Figure 3. (a) The real, z′, and (b) imaginary, z′′, parts of the effective force constant versus energy
for different values of disorder as marked.

with

α(ε) ≡ κ0〈ij | ˜̂
G|ij〉. (11)

Equation (10) should be solved with respect to the complex effective field z(ε). Without
disorder (� = 0), the solution is trivial: z′ = 1 and z′′ = 0. For finite disorder, the solution
can be found numerically in the general case and analytically in some limiting cases.

3.1. General case

The numerical solution of equation (10) for the real and imaginary parts of the effective field
for different values of disorder in the whole energy range is presented in figure 3. As seen from
figure 3(a), the real part of the effective spring constant varies around its crystal value z′ = 1,
being less than unity in the lower part of the energy band and greater than unity in the upper
part of the band. This is the expected behaviour, because the value of z′ describes the level-
repelling effect for the bare crystalline states when disorder is introduced in the system [22]
(see section 4.2). The deviation of z′ from unity increases with increasing disorder, which
reflects the more pronounced degree of level repelling in more highly disordered systems.

The imaginary part of the effective field is non-zero and negative only in the band
region. It basically reproduces the shape of the VDOS (equation (8)) and describes the
width of the spectral-density peak (equation (9)) which is proportional to the inverse lifetime
of plane waves in disordered structures (see section 4.3). The magnitude of z′′ increases
with increasing disorder, thus indicating the shortening of the plane-wave lifetime in strongly
disordered lattices. The imaginary part of the effective field approaches zero in the low-
energy limit, z′′(ε → 0) → 0, only if the disorder is low enough, for � � �∗, when
the structure in equilibrium is mechanically stable within the CPA (i.e. there are no negative
eigenvalues).
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Figure 4. The VDOS, g(ε), in the low-energy regime for different values of disorder as marked.
The thin solid curve (guide for the eye) shows an ε1/2 dependence.

3.2. Low-energy limit

Using the energy dependence of the effective field in the low-energy regime (see appendix B),
the expression (8) for the VDOS can be rewritten as

g(ε) = 1

z′(ε)
gcryst

(
ε

z′(ε)

)
� 1

(z′(0))D/2
gcryst(ε) � χDeb

(z′(0))D/2
ε(D/2)−1. (12)

As follows from equation (12), the low-energy VDOS in systems with lattice disorder
functionally behaves the same as in the reference crystal, i.e. gcryst(ε) ∝ ε(D/2)−1 (see figure 4),
and differs from the crystalline VDOS just by the factor (z′(0))−D/2 > 1. In other words, extra
states, in addition to the crystalline ones, appear in the low-energy regime due to disorder-
induced level-repelling effects [18,22,38,52,56,57]. The relative density of these extra states is

g(ε)− gcryst(ε)

gcryst(ε)
� [z′(0)]−3/2 − 1. (13)

With increasing energy, the disordered VDOS increases in energy faster than ε(D/2)−1 and this
results in the boson peak, the origin of which has been discussed in [22].

In the low-disorder limit (see appendix B), � → 0, the extra density of states (see
equation (13)) in the low-energy range scales quadratically with disorder,

g(ε)− gcryst(ε)

gcryst(ε)
� D

Z
�2, for�� 1, (14)

which has been confirmed numerically (see figure 5).

3.3. Critical disorder

All the derivations presented above are valid only for sufficiently small disorder,� < �∗. This
restriction comes from equation (41) (see appendix B), which has solutions only for � � �∗
(see figure 6). The critical value of disorder can be found numerically, giving �∗ � 1.296.
The corresponding value of the real part of the effective field at criticality, z′∗ = z′(�∗), can
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constant.

be found analytically using the fact that (df/dz′)�=�∗ = 0 ( see equation (41)), so that

z′∗ = 1 −
√

1 − 1 −�2∗
γ

. (15)

Equation (15) gives z′∗ � 0.43 for the fcc lattice (with γ ≡ (Z/2D)− 1 = 1 for Z = 12 and
D = 3).

When the disorder approaches the critical value where the VDOS behaves as a
renormalized Debye function (see equation (12)) and the imaginary part of the effective
force constant behaves as z′′ ∝ εD/2 (see equation (42)), the low-energy range shrinks to
zero (see figure 4). Above the critical disorder, both the imaginary part of the effective field
and the effective VDOS are finite at zero energy, z′′(0) �= 0 and g(ε = 0) �= 0, and negative
eigenvalues appear within the CPA. This means that the system becomes vibrationally unstable
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Figure 7. The spectral densities for vector vibrations in the fcc lattice with force-constant disorder
(the width of the box distributions� = 1) calculated by the CPA (solid curves) and KPM (dashed
curves).

in equilibrium, even within the mean-field description. Such a situation corresponds to the
spectrum of the dynamical matrix for instantaneous metastable configurations in liquid and
glassy states. It turns out that the energy spectrum of the instantaneous dynamical matrix in
the unstable regime (� > �∗) exhibits a peculiar (singular) universal behaviour around zero
energy, which we have also found in numerical experiments on liquid and vitreous SiO2 and
the IC-liquid and IC-glass [40].

4. Spectral density

4.1. Shape of the spectral density

The spectral density in the plane-wave representation, Akβ(ε), provides information about the
distribution of contributions of the different disordered eigenstates in a particular plane wave
from the branch β and with wavevector k. In a crystal, the spectral density is obviously a
δ-function,Acryst

kβ (ε) = δ(ε−εkβ). Disorder introduced in the system transformsAcryst
kβ (ε) into

the disordered spectral density which has a shape given by equation (9). The shape of Akβ(ε)

depends on the energy behaviour of the effective field z(ε). If we assume that the effective field
is energy independent, then the spectral density has the shape of a Lorentzian peak, the width
of which is proportional to the imaginary part, z′′, of the effective field. Of course, the effective
field does depend on energy (see figure 3), but if the imaginary part of the effective field is
small enough, which is true in the whole energy range for sufficiently small disorder, and at
least in the low-frequency regime (εkβ � εIR

kβ , see below) at any disorder below the critical
one (� < �∗), then the disordered spectral density still has the shape of a narrow peak (see
figure 7). The position, εmax

kβ , and full width at half-maximum, &kβ , of such a spectral-density
peak can be estimated from the following equations:

εmax
kβ � z′(εmax

kβ )εkβ and &kβ � 2|z′′(εmax
kβ )|εkβ. (16)

For a weak energy dependence of the real part of the effective field (see figure 3(a)), we
can approximate equation (16) giving

εmax
kβ � z′(εkβ)εkβ. (17)
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Figure 8. The peak positions, ωmax
kβ (thin curves), and peak widths, 2π&ω (thick curves), versus

plane-wave frequency, ωkβ , for different values of disorder as marked. The crossing points of the
curves for peak positions and peak widths correspond to the Ioffe–Regel crossover frequency. The
thin solid line (guide for the eye) shows an ω4

kβ dependence. The inset shows the ratio of the sound

velocities in disordered and ordered lattices, cdis
β /c

cryst
β , versus degree of disorder (solid curve). The

dashed curve in the inset corresponds to the low-disorder approximation, cdis
β /c

cryst
β � 1−D�2/3Z,

valid for �� 1. The critical behaviour of cdis
β /c

cryst
β is evident for �→ �∗.

In the low-energy regime (εkβ → 0), the imaginary part of the effective field is z′′ ∝ εD/2

according to equation (42), so that

&kβ ∝ ε(D/2)+1
kβ . (18)

This equation corresponds to the well known Rayleigh law for the peak width, &ω(ωkβ), in the
ω-representation [20, 21, 41]:

&ω(ωkβ) = 1

2ω
&kβ(ε

2
kβ) ∝ ωD+1

kβ , (19)

or &ω(ωkβ) ∝ ω4
kβ in the three-dimensional case (see figure 8).

Equation (17) defines the dispersion law in disordered lattices, ωmax
kβ =

√
εmax

kβ � cdis
β k (for

εkβ → 0), which is basically the same as in the reference crystal except for the renormalized
sound velocity, cdis

β � √
z′(0)ccryst

β , with ccryst
β being the sound velocity for branch β in the

reference crystal. Bearing in mind that z′(0) < 1 (figure 3(a)), it is evident that cdis
β < c

cryst
β

(see the inset in figure 8). We have found a similar relation for the model of the topologically
disordered IC-glass, where cdis/ccryst � 0.72 [52]. This value corresponds to � � 1.28 (see
the inset in figure 8), for which the distribution of the diagonal elements in the diagonal blocks
for the disordered-lattice model fits very well the similar distribution for the IC-glass (see
figure 1(a)).

4.2. Level-repelling effects

As seen from equation (17), disorder results in a shift of the crystalline spectral density,
characterized by the real part of the effective field, z′. The bare level moves downwards
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(upwards) if z′ < 1 (z′ > 1), i.e. when it is located in the lower (upper) part of the band (see
figure 3(a)). The shift of the bare level, εkβ , by disorder is a consequence of level-repelling
effects [18, 22, 38, 56]. Indeed, disorder introduced in the system results in the appearance
of non-zero interaction matrix elements between the bare states. These interactions lead to
standard quantum repelling between levels [30, 58]. If the interaction matrix elements are
approximately the same for all levels, then the bare crystalline level, εkβ , from the lower part
of the energy band is shifted downwards just because the number of the states above the bare
level (and repelling it downwards) is larger than the number of states below it (and repelling
it upwards). This explains qualitatively why the value of the real part of the effective field is
z′ < 1 in the lower part of the band and vice versa, z′ > 1 in the upper half of the energy band
(see figure 3(a)).

We have proved quantitatively (analytically and numerically) such a picture of level-
repelling effects in the VDOS for the force-constant-disordered fcc lattice [22] and in the
topologically disordered IC-glass [50]. A similar effect has also been found numerically in
models of disordered Si [57].

An example of the spectral densities for different energies of external plane waves at
relatively high disorder (� = 1) is shown in figure 7. Their widths at sufficiently large εkβ
become comparable to their positions and plane waves at such energies are very short-lived
quasiparticles [59, 60]. The level-repelling effects are clearly seen in pronounced shifts (to
lower energies) of the peak positions with respect to εkβ .

We have also presented in figure 7 the results of precise numerical solutions for the spectral
densities obtained by the KPM [61]. The very good agreement between the CPA and KPM
results supports the reliability of the mean-field treatment in obtaining the spectral densities.

4.3. Ioffe–Regel crossover and localization

Disorder also broadens a bare level, so that the δ-functions making up the crystalline VDOS
are broadened into peaks of finite width, related to the imaginary part of the effective field (see
equation (16)). This occurs because a plane wave |k, β〉 is not an eigenstate in the disordered
lattice. So it decays with time and can be treated as a quasiparticle having a finite lifetime.
This lifetime is inversely proportional to the width of the peak of the spectral density and this
determines the physical meaning of z′′(ε) [38].

The scattering properties of external plane waves in disordered lattices strongly depend on
their bare energy. If the energy is low enough, the spectral-density peak is narrow compared
with its position, and the quasiparticles live for a long time, thus indicating a weak-scattering
regime. For higher energies, the width of the spectral density becomes comparable to the
peak position (see figure 8). This means that the quasiparticles there decay quickly and the
bare plane waves are in the region of strong scattering. The crossover between weak- and
strong-scattering regimes is called the Ioffe–Regel crossover [59, 60, 62]. The energy of the
bare plane wave, εIR

kβ , at which such a crossover occurs is the Ioffe–Regel crossover energy.
The quantitative condition for the Ioffe–Regel crossover is [60]

ωmax
kβ

2π
τkβ ∼ 1, (20)

with ωmax
kβ ≡

√
εmax

kβ standing for the frequency and τkβ being the lifetime of the quasiparticle.

The quasiparticle lifetime can be easily evaluated in the weak-scattering regime from the time
dependence of the probability, |〈k, β; t |k, β; 0〉|2, to find the system at time t in the same plane-
wave state |k, β〉 as it was at t = 0 [38], i.e. 〈|〈k, β; t |k, β; 0〉|2〉 � cos2(ωmax

kβ t) exp(−t/τkβ),
where
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Figure 9. Phase diagram for vector vibrations in the fcc lattice with force-constant disorder
characterized by the box distribution. The dashed (dot–dashed) curve corresponds to the
Ioffe–Regel crossover plane-wave energy obtained from equation (22) (or from equation (22) in
which the spectral-density peak width is decreased, say, by a factor 2). The circled solid curve
shows the trajectory of the boson peak (for� = 0, its position coincides with the lowest van Hove
singularity in the crystalline lattice). The solid curve represents the upper band edge obtained by
the CPA. The horizontal dotted curve separates the systems stable in equilibrium from those that
are mechanically unstable.

τkβ = 1

|z′′(εkβ)|

√
z′(εkβ)
εkβ

∝ ε−(D+1)/2
kβ . (21)

The inverse lifetime, τ−1
kβ , of course, coincides with the full width, &ω(εkβ), of the spectral

density in the ω-representation [18], τ−1
kβ = &ω(εkβ) ≡ &kβ/(2

√
εmax

kβ ), and the Ioffe–Regel

criterion (20) can therefore be rewritten as

ωmax
kβ (εkβ)

2π
∼ &ω(εkβ). (22)

This equation should be solved with respect to εkβ (or ωkβ = √
εkβ) and an estimate, εIR

kβ (or
ωIR

kβ), for the Ioffe–Regel crossover energy (or frequency) can be found. Such a solution can
exist at sufficiently large ωkβ . Indeed, in the low-frequency limit, the width of the spectral
density, &ω ∝ ωD+1

kβ , is much smaller than the peak position, ωmax
kβ ∝ ωkβ , but &ω grows

quickly with increasing ωkβ and can easily reach the peak-position value, if the disorder is
large enough (see figure 8).

We have solved equation (22) numerically using the exact energy dependence for the
effective field for different values of disorder,� (see figure 8). The results for the Ioffe–Regel
crossover energy are presented in the phase diagram for vector vibrations in the fcc lattice (see
figure 9). There is a minimum value of disorder (�min � 0.7 for the disordered fcc lattice
using equation (22)), starting from which the region of the strong-scattering regime appears in
the system. The strong-scattering regime becomes broader with increasing disorder, while the
low-energy weak-scattering regime shrinks basically to zero around the critical disorder, �∗.
We should stress that the boundary between weak- and strong-scattering regimes should really
be thought of as a relatively wide crossover strip, and equation (22) serves for an order-of-
magnitude estimate of the location of this strip. Bearing this in mind, the high-frequency region
at sufficiently large disorder should not properly be regarded as a region of weak-scattering
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because the width of the spectral-density peak there is of the same order of magnitude as the
peak position. The true weak-scattering regime occurs only either in the low-energy regime
at any disorder less than the critical value, � � �∗, or for all energies at small disorder
(� � �min). The existence in these regions of small values of the energy and disorder
parameters forces the spectral-density width to be much smaller than the peak position. In
order to illustrate how sensitive the Ioffe–Regel crossover energy is to the numerical coefficients
in equation (22), we have calculated εIR

kβ from equation (22) in which the spectral-density peak
width, &ω, has been replaced, say, by 2&ω, thus enhancing the strong scattering. The results
for this Ioffe–Regel crossover boundary are shown by the dot–dashed curve in figure 9. It is
clearly seen how the region of the strong-scattering regime increases, with just the low-energy
and low-disorder regions surviving for the weak-scattering regime.

We have also shown in figure 9 the trajectory of the boson peak (circled solid curve)
calculated as in [22]. Remarkably, it almost coincides with the trajectory of the Ioffe–Regel
crossover for large enough disorder when the strong-scattering regime appears in the system.
This feature has also been found in real glasses, for example v-SiO2 [60] and in the topologically
disordered IC-glass model (to be published elsewhere).

The solid curve in the phase diagram shows the upper band edge of the VDOS calculated
within the CPA. This appears to be a very good estimate for the trajectory of the threshold for
the localization–delocalization transition, which, in fact, we have calculated [63] more exactly
by means of a multi-fractal analysis [64] with a relatively high precision, �5%, to be situated
at slightly lower energies than the CPA band edge. The CPA fails to reproduce the high-energy
tail in the VDOS (see figure 2) and more accurate methods should be used [5,6]. It should also
be mentioned that, for� > 1, a low-energy tail of localized states extending into the negative
eigenvalue range appears in the true spectrum [40]. The CPA is not able to reproduce this
effect for 1 � � � �∗ but still, for the majority of states with energies far enough away from
both localization thresholds, the CPA results are very reliable.

4.4. Spectral density for large momentum transfer

In the previous subsections, we have analysed the situation at small and intermediate energies
of external plane waves. These energies correspond to a relatively small momentum transfer in
scattering experiments (see e.g. [42,65]). However, larger values of k are also of interest both
from experimental (see e.g. [66–69]) and theoretical (see e.g. [19,43,50,59,60,70,71]) points
of view. Attention has been mainly focused on the behaviour of the dynamic structure factor,
Skβ(ω), which can be roughly approximated in the high-temperature regime (h̄ωd/T � 1) by
the following expression [43]:

Skβ(ω) � T k2

2mh̄ω2

∑
d

|〈d|kβ〉|2δ(ω − ωd), (23)

where the Debye–Waller factor has been ignored (cf [72]). In equation (23), we have also
neglected the mixture of polarizations for phonons |kβ〉 and assume that β is related to the
longitudinal branch. In this case, the dynamical structure factor is obviously (see equation (7))
proportional to the spectral density,

Skβ(ω) � T k2

2mh̄ω2
A
(ω)
kβ ≡ T k2

mh̄ω
Akβ(ω

2), (24)

where A(ω)kβ is the spectral density in the ω-representation.
A peculiar feature has been found in the frequency dependence of the dynamical structure

factor in topologically disordered glasses at large values of the momentum transfer. Namely,
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Figure 10. The evolution of the spectral density, Akβ(ε) (a), and dynamic structure factor S̃kβ (b),
with wavevector magnitude, k, as marked (the corresponding crystalline energies, εkβ are given in
brackets), taken along the [100] symmetry direction in the first Brillouin zone (the maximum value
of k = 2.72 corresponds to the zone boundary) for the longitudinal branch in the fcc disordered (� =
1) lattice. The thin solid curve in (a) for k = 2.72 shows the numerical results obtained by KPM.

the appearance of a secondary peak below the Brillouin peak in the ω-dependence of Skβ(ω)

has been observed [19,43,50,71] with increasing value of k. This has been related to the boson
peak [71], or interpreted as a manifestation of a microscopic relaxation process typical of a
topologically disordered glass [43].

A natural question is whether or not the secondary peak exists for the disordered-lattice
models and, if so, then what is the origin of this peak. In order to answer these questions, first,
we plot in figure 10(a) the evolution of the spectral density Akβ(ε) for the longitudinal branch
with increasing value of the wavevector, taken for definiteness to be along the [100] direction.
It is clearly seen from this figure that the spectral density has a pronounced peak (Brillouin
peak) for all values of k taken from the first Brillouin zone. However this peak is no longer
Lorentzian for large k. It is asymmetric and has a pronounced shoulder in the low-energy range.
A similar picture has been observed in simulations for topologically disordered systems. The
Brillouin peak shifts to higher energies, becomes very broad and a smooth shoulder-like feature
appears below this peak and may also contain broad peak-shaped features [50, 59, 70, 73], so
that the spectral density starts to resemble the VDOS. In the low-energy regime, the spectral
density goes to zero.

The dynamical structure factor differs from the spectral density and contains an additional
decaying energy (frequency) function (see equation (24)). Therefore, if we plot the effective
dynamic structure factor, S̃kβ(ω) = (2mh̄/T )Skβ(ω) = (k2/ω2)A

(ω)
kβ = (k2/2

√
ε)Akβ(ε),

versus frequency (see figure 10(b)), the low-frequency features are enhanced due to the ε−1/2

contribution. The low-energy shoulder in the spectral density of the disordered-lattice models
transforms, for large k values close to the Brillouin-zone boundary, to the secondary peak in the
dynamic structure factor (see the solid curve in figure 10(b)). The intensity of the secondary
peak depends on the degree of disorder, so that it becomes very pronounced around the critical
disorder (see figure 11(b)), although it does not appear for the spectral density in the energy
representation (cf figure 11(a)). Therefore, the presence of the secondary peak in Skβ(ω) of
disordered-lattice models for large values of wavevector and large degrees of disorder is a dis-
tinctive feature of such models. Consequently, the occurrence of a similar peak in topologically
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Figure 11. The evolution of the spectral density, Akβ(ε) (a), and dynamic structure factor S̃kβ (b),
with degree of disorder,�, as marked for k = 2.72 (longitudinal branch) corresponding to the zone
boundary along [100].

disordered structures can hardly be attributed solely to topological disorder (cf [43]).
The origin of the secondary peak in the dynamic structure factor of disordered-lattice

models can be understood from the qualitative analysis of equations (9) and (24). In the
low-frequency limit, ω → 0 (or ε → 0), the energy dependence of the spectral density
in equation (9) is dictated by the imaginary part of the effective field, Akβ ∝ |z′′(ε)| ∝
ε3/2 = ω3, so that Skβ ∝ Akβ/ω ∝ ω2. The low-energy limiting behaviour of z′′(ε)
deviates approximately around the energy corresponding to the shifted (due to the level-
repelling effect) lowest van Hove singularity, i.e. the first minimum in the energy dependence
of z′(ε) (cf figures 3(a) and (b)). Above this energy, the energy dependence of the imaginary
part of the effective field is appreciably weaker and basically reproduces the shape of the
VDOS (see figure 3(b)). This results in a weaker dependence of the dynamic structure factor,
which shows, in this intermediate frequency range, either the shoulder-like behaviour, if the
wavevector magnitude is not large enough and the low-frequency tail of the Brillouin peak
plays a significant role (see the long- and short-dashed curves in figure 10), or a secondary
peak for large values of k (see the solid curve in figure 10), when the influence of the Brillouin
peak is suppressed by the ε−1/2 function in equation (24). Therefore, the position of the
secondary peak in Skβ(ω) for the disordered lattice models approximately coincides with the
shifted lowest van Hove singularity and thus with the position of the boson peak [22]. However,
we should stress that the presence of the pronounced secondary peak in the dynamic structure
factor for large values of k does not mean a major contribution of plane waves with such k to
the boson peak, which is proportional to the sum of all plane waves (see [22] for more detail).

Theω2-dependence of the dynamic structure factor in the low-frequency regime found for
the disordered-lattice models is consistent with a k4-dependence of the spectral density width
and is in contrast to the constant (non-zero), limit of Skβ(ω) found for topologically disordered
glasses [19, 43, 50], and thus can be considered as a drawback of lattice models.

4.5. Sum-rule correlations and plane-wave scattering

We have seen in the previous subsection that, independent of the degree of disorder, low-
energy external plane waves are weakly scattered in a force-constant disordered lattice. This
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is a consequence of the essentially different dependences on the plane-wave energy of the
peak width (&kβ ∝ ε

5/2
kβ ) and peak position (εmax

kβ ∝ εkβ) of the spectral density (see
equations (17), (18)), which gives rise to the occurrence of weak scattering (&kβ � εmax

kβ )
for εkβ → 0. The question is how generic is this feature.

In order to answer this question, let us consider a more general formulation of the problem
using the following Hamiltonian in the site representation:

Ĥ =
∑
i

(
εi + γ

∑
j �=i
κij

)
|i〉〈i| −

∑
i,j �=i

κij |i〉〈j |. (25)

The diagonal elements of the Hamiltonian have two constituents: random on-site ‘energies’, εi ,
and the correlation contribution proportional to the sum of random off-diagonal elements, κij ,
in the same row. The parameter γ controls the sum-rule correlations between diagonal and off-
diagonal elements. If γ = 1 and εi = 0, the Hamiltonian (25) describes the scalar vibrational
problem, while the case γ = 0 corresponds to the well known electron Anderson Hamiltonian
with on-site and off-diagonal disorder [5]. The spectral properties of a similar Hamiltonian,
but defined on a positionally random set of sites with deterministic transfer integrals, have
been studied in [23].

The scattering properties of external plane waves in the disordered structure described by
the Hamiltonian (25) can be studied using spectral densities for which the mean-field approach
works very well (as shown above for the vibrational problem). It is easy to show that only in
the case of γ = 1 and εi = 0 can the Hamiltonian (25) be reduced to the form of equation (6)
which has a multiplicative effective mean field (the energy of the quasiparticles is the product
of the effective field and the bare energy, ε̃kβ = z(ε)εkβ—see equation (32)). For γ �= 1, the
situation is quite different, because now the effective field has an additive constituent as well,
and this drastically changes the scattering properties of plane waves. Below, we demonstrate
this, considering the simplest particular case for the Hamiltonian (25) characterized by γ = 0,
κij = κ0 and random εi taken from the box distribution of half-width, �el, centred around
ε0 = 0, i.e. the standard Anderson Hamiltonian with diagonal disorder [74], for the simple
cubic lattice.

The CPA spectral density, Ael
k (ε) = −(π)−1Im(ε− ε̃k)−1, for the Anderson Hamiltonian

can be expressed via the quasiparticle energy, ε̃k = εk + ε̃(ε), which is now the sum of the
crystalline energy, εk, and the effective field, ε̃(ε) = ε̃′(ε) + iε̃′′(ε). The spectral densities
Ael

k (ε) are peak shaped and in the low-energy limit, δεk = (εk − εcryst
min ) → 0 (the energy δεk

is referred to the lower crystalline band edge, εcryst
min = −κ0Z, where Z is the coordination

number), the position and width of the peak can be estimated from the following relations:

δεel
max ∼ δεk, (26)

and

&el(εk) � 1
2πχ

el(�el)2
√
δεel

max ∝ (�el)2
√
δεk, (27)

where the peak position, δεel
max = (εel

max − εband
min ), is measured from the CPA lower band

boundary, εband
min (see figure 12). The last expression is a consequence of the fact that

Im [Gcryst(ε − ε̃)] � −πχ el
√
ε − εcryst

min , if (ε − ε
cryst
min ) → 0 with χ el being the constant

coefficient similar to the coefficient χDeb in equation (37).
In full analogy to vibrations (see equation (22)), the Ioffe–Regel crossover between weak-

and strong-scattering regimes for electrons can be defined in terms of the following condition:

δεel
max(εk)

2π
∼ &el(εk). (28)
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Figure 12. The peak positions, δεel
max (thin curves), and peak widths, 2π&el (thick curves) for the

electron spectral densities for the Anderson Hamiltonian with on-site disorder for the simple cubic
lattice, versus plane-wave energy, δεk , at different values of disorder as marked. The crossing
points of the curves for peak positions and peak widths correspond to the Ioffe–Regel crossover
energy for electrons.

In contrast to vibrations, the spectral-density peak width for electrons scales more slowly
than the peak position as a function of the plane-wave energy (see equations (26), (27) and
figure 12). This means that, in the long-wavelength limit, δεk → 0, the width of the spectral
density is always larger than the peak position, and the strong-scattering regime occurs for
plane waves having energies around the lower crystalline band edge (see figure 13). The
situation is opposite for vibrations, for which &kβ ∝ ε

5/2
kβ (cf equations (18) and (27)). As a

consequence, the shapes of the regions associated with the weak- and strong-scattering regimes
for plane waves in the phase diagram are different for electrons and vibrations (cf figures 9
and 13). Now, for electron plane waves with energies around the lower crystalline band edge,
the scattering is always strong and the weak-scattering regime is realized only in the midband
range for sufficiently small disorder. In contrast to vibrations, only a single parameter, the
strength of disorder �el, rather than two parameters, the degree of disorder � and the energy
εkβ , for vibrations, controls the appearance of the weak-scattering regime. The boundary
between the weak- and strong-scattering regimes (see the dashed curve in figure 13) is again
not precise and should be thought of as an estimate for the crossover energy.

It should be mentioned that the electron phase diagram presented in figure 13, for the case
of very small disorder (�el → 0), supports a standard concept for electrons [75], according to
which the Ioffe–Regel crossover from the weak- to the strong-scattering regime corresponds
to the transition from extended states to localized ones. Indeed, the Ioffe–Regel crossover
boundary (the dashed curve in figure 13) almost coincides with the localization–delocalization
threshold (the circles in figure 13) [76] and the CPA band edge (solid curve) as �el → 0. At
high disorder, the localization–delocalization transition, however, is not associated with the
Ioffe–Regel crossover, because all plane waves for such disorder are strongly scattered.

In the more general case of diagonal and off-diagonal disorder coexisting in the Anderson
Hamiltonian (but with γ = 0), the most successful homomorphic cluster CPA [77,78] results
in an effective field which necessarily has an additive constituent and the above conclusions
still hold. In the case of 0 < γ < 1, the mean field can be constructed as well but it also has an
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Figure 13. Phase diagram for electrons described by the Anderson model with on-site energy
disorder in the simple cubic lattice. The dashed curve corresponds to the Ioffe–Regel crossover
plane-wave energy obtained from equation (28). The solid curve represents the lower band
edge obtained by the CPA and the circles show the trajectory for the localization–delocalization
threshold [76].

additive constituent which disappears only for γ = 1 (to be published elsewhere). Thus, we can
conclude that the existence of the low-energy weak-scattering regime is characteristic only of
the vibrational problem and it results from the exact sum-rule correlations in the corresponding
Hamiltonian.

5. Conclusions

We have analytically investigated classical harmonic atomic vibrations in disordered lattices.
The fcc atomic lattice with force-constant disorder described by a box probability distribution
has been chosen for analysis. The distributions of matrix elements in diagonal and off-diagonal
blocks in the dynamical matrix are rather similar to those of topologically disordered models.
The atomic vibrations were treated as vectors and analysed within the framework of the single-
bond CPA; the results are essentially the same as those found from a precise numerical study.
The CPA self-consistency equation has been derived for vector models and solved analytically
in the limiting cases of small disorder and low energies.

The CPA solution of the problem has allowed us to investigate the spectral properties
of the model in terms of spectral densities. We have shown that the Rayleigh law for the
spectral-density width is intrinsic for vector vibrations in disordered lattices.

We have also investigated the Ioffe–Regel crossover between weak and strong scattering
for vector vibrations. The regime of weak scattering takes place at all energies for small
degrees of disorder, but in the low-energy regime occurs only for large disorder. The existence
of a disorder-independent weak-scattering regime for low-energy external plane waves is a
consequence of the sum-rule correlations in the dynamical matrix, typical for the vibrational
problem only. We have demonstrated that the Ioffe–Regel crossover occurs in the boson-peak
region and is not related to the localization–delocalization transition for vector vibrations in the
disordered lattice studied. In contrast, the Ioffe–Regel crossover for electrons (described by
the Anderson model with on-site energy disorder in the simple cubic lattice) exists only at low
values of disorder, where it is associated with the localization–delocalization transition. At
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higher values of disorder for the Anderson model, the transition is between strongly scattered
extended states and localized states.

We have found that a secondary peak appears in the dynamic structure factor below the
Brillouin peak for sufficiently large values of k for the lattice models as previously found in
simulations of topologically disordered glasses. Hence this feature cannot be due solely to the
presence of topological disorder, nor can it be due to relaxations.

Appendix A

Here we give the derivation of the self-consistency CPA equation for vector vibrations. It is
known [44, 45] that the self-consistency equation for the effective force constant, κ̃(ε), in the
single-bond approximation can be written as follows:〈

δκ

1 − δκ〈ij | ˜̂
G|ij〉

〉
|ij〉〈ij | = 0, (29)

where δκ = κij−κ̃ and the effective Green function, ˜̂
G = [ε− ˜̂

H]−1, is defined for the effective

Hamiltonian, ˜̂
H = (κ̃/2)

∑
i,j |ij〉〈ij |. Our aim is to find the matrix element, 〈ij | ˜̂

G|ij〉, for
vector vibrations. This can be rewritten as

〈ij | ˜̂
G|ij〉 = 2

∑
α,α′
(r̂
(0)
ij )α(r̂

(0)
ij )α′(G̃iα,iα′ − G̃iα,jα′), (30)

and this can then be expressed in terms of diagonal elements of the Green function in the site
basis for the reference crystal. In order to show this, let us first rewrite the matrix elements,
G̃iα,jα′ in the plane-wave basis, {|k, β〉},

G̃iα,jα′ = 1

N

∑
kβ

(n̂β)α(n̂β)α′
exp{ik(r(0)i − r

(0)
j )}

ε − ε̃kβ , (31)

where n̂β is aD-dimensional unit polarization vector for the branch β and the effective energy,
ε̃kβ , obeys the relation

ε̃kβ = z(ε)εkβ = κ̃
∑
j (i)

(r
(0)
ij n̂β)

2(1 − exp{ikr
(0)
ij }), (32)

with z(ε) = κ̃(ε)/κ0 being the dimensionless effective force constant and the index j (i)
running over all nearest neighbours to the site i, i.e. j = 1, . . . , Z, with Z standing for the
number of nearest neighbours (all the sites in a crystal are equivalent and εkβ , in fact, does not
depend on i).

Substituting expression (31) back into equation (30) we obtain

〈ij | ˜̂
G|ij〉 = 2D

Zκ̃
(εG̃(ε)− 1), (33)

where

G̃(ε) ≡ G̃ii(ε) ≡ 1

D

∑
α

G̃iα,iα(ε) = 1

ND

∑
kβ

1

ε − ε̃kβ (34)

is the average on-diagonal (independent of i) element of the effective Green function in the site
basis. The effective Green function, G̃(ε), can be expressed via the crystalline one,Gcryst(ε), as

G̃(ε) = 1

z
Gcryst(ε/z). (35)
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Finally, the expression for 〈ij | ˜̂
G|ij〉 reads

〈ij | ˜̂
G|ij〉 = 2D

Zzκ(0)

[
ε

z
Gcryst

(
ε

z

)
− 1

]
, (36)

and this solves the problem when substituted back into equation (29).
The dimensionless effective spring constant z(ε) = κ̃/κ0 fully determines the effective

mean field. This is a complex quantity and should be found from the solution of the self-
consistent equation (29). The self-consistent equation (29) for vector vibrations is very similar
to that for the scalar models [20, 21, 44, 45]. The only difference is the factor D in the

denominator of equation (29), with 〈ij | ˜̂
G|ij〉 given by equation (36). For scalar models, this

is absent, even for D-dimensional lattices with D �= 1.
The crystalline Green function, Gcryst(x), with complex argument x = ε/z, can be easily

found as an analytical continuation from the real axis of its imaginary part (VDOS) [38]. After
that, the self-consistent equation can be solved numerically in the general case, and analytically
in some limiting cases (e.g. ε → 0 and/or �→ 0), and the effective field can be found.

If z(ε) is known, the task of evaluating the spectral density becomes straightforward.
Indeed, bearing in mind that the energy, ε̃kβ , of the eigenstates in the effective crystal is
connected to the energy, εkβ , of the similar eigenstates in the reference crystal according to
relation (32), it is easy to see that the VDOS and diagonal elements of the spectral-density
operator in the crystalline plane-wave basis satisfy equations (8) and (9).

Appendix B

Here we show how the self-consistent equation (10) can be solved analytically in the low-
energy limit, ε → 0, and how the effective field, z(ε), can be found in this case. In order to do
this, first we find the expression for the function α(ε) = α′(ε) + iα′′(ε) given by equation (11)
via z(ε) and ε. This can be done, bearing in mind the following relations for the crystalline
Green function, Gcryst(ε/z), in the low-energy limit, when the Debye approximation for the
crystalline VDOS,

gcryst � χDebε
(D−2)/2, (37)

is valid:

Re

[
Gcryst

(
ε

z

)]
� const and Im

[
Gcryst

(
ε

z

)]
� −πχDeb

(
ε

z′

)D−2
2

. (38)

Substituting equation (38) into equations (11) and (36), we obtain the leading terms in ε for α:

α′(ε) � − 2D

Zz′
, (39)

and

α′′(ε) � − 2D

Z(z′)2

[
πχDeb

z′

(
ε

z′

) D
2

− z′′
]
. (40)

These expressions can then be used for an expansion of the logarithm in equation (10) in terms
of ε, which, after some algebra, results in the following final relations for z′(ε) and z′′(ε):

f (z′) ≡ 2�

z′(γ + 1)
− ln

[
1 +� + γ z′

1 −� + γ z′

]
= 0, (41)

and

z′′(ε) � 2πDχDeb

Zz′

(
ε

z′

) D
2

{[�2 + ((γ + 1)z′)2 − (1 + γ z′)2]−1 − [(γ + 1)(z′)2]−1}−1, (42)
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where γ ≡ (Z/2D)− 1.
In fact, relation (41) is the equation to find the real part of the effective force constant, z′.

The important point is that all the parameters entering this equation are energy independent,
so that z′(ε → 0) � z′(0) = constant. Equation (41) can be solved numerically in the case of
arbitrary disorder and analytically in the small-disorder limit.

The imaginary part of the effective force constant, as follows from equation (42), scales
with energy as z′′(ε) ∝ εD/2. Such a behaviour is basically a consequence of the Debye law
for the VDOS in the low-energy regime (see equation (37)) and, in this sense, is general for
disordered lattices. This dependence also determines the scaling behaviour of the spectral-
density peak width with energy, the well known Rayleigh law in this case.

Equations (41) and (42) have important consequences for the energy dependence of the
VDOS in the low-energy limit. Indeed, in the limit ε → 0, the expression (8) for the VDOS
can be rewritten in the form of equation (12).

In the low-disorder limit, � → 0, equation (41) can be solved with respect to z′ while
equation (42) can be simplified, so that

z′(ε) � 1 − 2D

3Z
�2(1 + O(ε)), (43)

z′′(ε) � −2πχDebD

3Z
εD/2�2. (44)

These relations are used in deriving equation (14).
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